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Abstract. This paper presents a fast K-dimensional tree-
based search method to speed up the encoding process for
vector quantization. The method is especially designed for
very large codebooks and is based on a local search rather
than on a global search including the whole feature space.
The relations between the proposed method and several ex-
isting fast algorithms are discussed. Simulation results dem-
onstrate that with little preprocessing and memory cost, the
encoding time of the new algorithm has been reduced sig-
nificantly while encoding quality remains the same with re-
spect to other existing fast algorithms. © 2004 Society of Photo-
Optical Instrumentation Engineers. [DOI: 10.1117/1.1683885]
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1 Introduction

In this paper, a new fast method is presented which sig-
nificantly reduces the computations without large memory
cost and is applicable for large codebooks and vector di-
mensions.

2 Description of the Encoding Method

Our proposed method is based on the idea to build clusters
containing a certain number of reference vectors. Thus,

only a certain number of clusters have to be searched and
the closest reference vector will be found within these clus-

ters. This reduces the number of necessary floating point
operations significantly.

The clustering works as follows: first one empty cluster
is generated, which contains the whole input sp&d .(A
vectorx belongs to a cluster, if for each dimensiork, k
=1,--,n the following relation holds mip<x,<max,. The
mins and maxs denote the lower and upper bounds of the
clusteri in each dimension. Now the reference vectors are
put one after another in the appropriate clustgrthe very
beginning in the empty initial cluster

Once the number of the vectors in one cluster exceeds
an application-based threshold value, this cluster is split
into two child clusters. The range of the two child clusters
in the input space is determined as follows: the dimension
of the largest deviation of the reference vectors within the
parent cluster is determined. L@, be the dimension of
the largest deviation, then the ranges of the two child clus-
ters for this specific dimension are for the left cluster
(mindmax,middma) and for the right cluster

(midy _,maxy ), while the ranges for the other dimen-

sions remain unchanged and are the same for both the left
and right cluster. The mins and the maxs are the parent’s
bounds; mi¢__ is the average of the two closest values of

the reference vectors in this dimension. Each time a cluster
is split into two child clusters, the parent cluster becomes a

node in the tree, and the child-clusters are new leaves of the
tree. This means the generated tree will be binary with the

leaves containing all reference vectors. The nodes can be
used to look up a certain cluster. Every nonterminal node is

associated with a region and a partitioning hyperplane of

the formx: x4 _=h, which needs storage of two scalar

Nearest neighbor search is based on finding the closestquantities (I,q,h) at each node, and also the pointers to

point to a reference point among such points in the
K-dimensional K-d) space. Reducing the complexity of

the child-clusters themselves. The quantty,, is the co-
ordinate axis orthogonal to the hyperplane and corresponds

nearest neighbor search is of considerable interest in vectorio the dimension of the largest deviation of the reference

guantization(VQ) encoding.

vectors within the parent cluster, whikeis the location of

To overcome this problem, several fast quantization al- the plane on this axis. The location is given by the average
gorithms have been developed. We can classify previousof the two closest values of the reference vectors in this

work into two groups.

dimension. Thus, a better discriminatory power can be

The first group seeks a suboptimal solution in the sense gchieved in a denser data distribution.

of a mean squared error. The second group addresses an This process is repeated until all reference vectors of the

exact solution of the nearest neighbor encoding problem codebook have been processed and put into the appropriate
with less computation than that of exhaustive search. In this ¢|yster.

context,K-d trees have been widely used for fast search. In

Ref. 1 the emphasis lies on the optimal design of Khe

Once all vectors are distributed to the clusters, the clos-
est reference vector to a given input vector can be found

tree for efficient nearest neighbor search in multidimen- without searching the whole table, but just a couple of clus-
sional space under a bucket-Voronoi intersection searchters have to be searched. First the cluster where the input
framework. The main disadvantage of this method is a rela- vector belongs is looked up. This takes only a few com-
tively low vector dimension. The fast encoding method pares, because the clusters can be ordered in a tree-
proposed in Ref. 2 exploits the topological structure of the structure, which is generated while the clusters are built.

codebook but is designed for relatively small codebooks.
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Now the Euclidean distance to all reference vectors in the
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found cluster is calculated and the closest codeword is Table 1 Comparison of computation performance for Fast TQ, Ac-
found curate TQ, Li and Salari algorithm, and exhaustive search. The

Th lexit f the t tructured t ti overall performance is determined by multiplications, additions,
€ complexity o € tree-structured vector quantiza- comparisons (MACs) and is needed for the sorting of the code-

tion (TQ)-lookup algorithm can be determined as follows: vector distances from the hyperplanes for different codebook sizes.
the number of compares which are necessary for finding the(Codebook is tested with an image outside the training set.)

right cluster depends on the level of the tree. If the refer-
ence vectors are uniformly distributed within the codebook, Size Algorithm * * Compares
the tree is balanced, and the number of compares is given

by the following equationprovided that each leaf of the Fast TQ (7) 2124 42.48 532
tree contains the same number of reference vectors 256 Acc.TQ (7) 54.88 108.72 133.96
Ncompares: |0g2 NtotaI/NcIusterv in which Ncomparegs the num- A.CC' TQ (19). 9187 182.73 100.66
ber of compares,q is the total number of reference vec- Li-and Salari 34.96 65.96 101.08
tors, andN,er the average number of elements in each Exh. search 1024 2048 256
cluster. The number of elements per cluster varies from one Fast TQ (7) 21.33 42.67 5.33
to the maximum number of vectors which are allowed per 1024  Acc. TQ (7) 176.03 351.05 390.84
cluster. Resullts fo_r the average number o_f elements per Acc. TQ (19) 279 65 558.3 304.55
cluster are given in Section 3. After the right cluster is Li and Salari 667.62 1331.24 1704.11
determined, this cluster has to be searched to find the near- Exh. search 4096 8192 1024
est reference vector within this cluster. The number of dis- '

tance calculations Bl If the search is stopped at this Fast TQ (7) 19.64 39.28 4.92
point, quite good results can be achieved with a minimum 65536  Acc. TQ (7) 267.92 534.8 598.76
of computationgsee Table L The TQ algorithm which is Acc. TQ (19) 287.32 573.64 433.92
executed just until this point will be called Fast TQ, the full Li and Salari 4995.72 9087.4 26542.52
TQ will be called Accurate TQ. If the search is continued to Exh. search 262144 524288 65536

find the best approximation, the number of computations
mainly depends on the distribution of the reference vectors
within the codebook and on the dimension of the reference per clyster; for 256 vectors it is 1228.8 bytes, which is still

vectors. TQ will be compared to two other algorithms: ex- |esg than the memory usage of the Li and Salari algorithm
haustlvg search anq the quantization algonthm pro_posed iN(6144 bytes The Accurate TQ is fast for large codebooks
Ref. 2 (in the following referred to as Li and Salari algo- 514 uses the same amount of memory as the Fast TQ. The

rithm). The exhaustive search does not need to store anyyegiting quantized image has the same peak signal to noise
further information, so there is no memory overhead. The (4t of 21.24 dB as that for exhausting search, but the

Li and Salari algorithm works by calculating the distances process of quantizing is much faster. For small codebooks

from the reference vectors to some fixed vectors, and stor—(256 vectors the Li and Salari algorithm performs better.
ing these distances associated with the reference vectorsTne yalues stated in Table 1 are normalized to the number

The number of fixed vectors proposed in Ref. 2 is three, ot yectors that were quantized, i.e., a value of 1024 in the
and this is the number of fixed vectors we used in our column + means that in average 1024 additions were

simulations. needed to quantize one vector.

3 Simulation Results 4 Conclusion

Computer simulations using six mammographic images A new fast vector lookup technique for large codebooks has
from the Mammographic Image Analysis Soci€iMIAS) been presented in this letter. It has several advantages. The

database were performed to evaluate the proposed methodnain advantage of the TQ algorithm is that a region in the
in comparison with some other fast algorithms. We use codebook, which is close to the best matching reference
three codebook sizes &f=256,N=1024, andN=65536 vector, can be found with just a couple of comparisons. If
codewords each. The codebooks were generated by a neurapplied to large codebooks, it is the fastest algorithm so far
network algorithm based on the “neural-gas” network. The known. Noa priori knowledge is necessary, and it can be
performance of the “neural-gas” network is better than the applied for high vector dimensions. It is flexible, i.e., it is
usually employed Lloyd algorithm. The vector codebook applicable to every codebook without modifications. The
was trained by using five 10241024 mammograms using memory usage is small, so that it can be used even in
the “neural-gas” network. The images are monochrome memory restricted environments. An important application
with 256 graylevels. The vector dimensionis 4xX4=16. area of the proposed method is telemedicine and it is ex-
After the codebook converged, the quantization was per- pected to support the very high archiving and transmission
formed using images, which were not included in the train- requirements of digital medical images, as required for ex-
ing set. In our simulations the maximum number of vectors ample in teleradiology.

per cluster was set to 7 resp. 19, the average number of
vectors per cluster was 5 resp. 14. i o )

 The simulation results are summarized in Table 1. The - ¥, Ranesubranania and . Pl Fistmensonal vee sge, |
interpretation of the results yields that the Fast TQ is very zation encoding,”|EEE Trans. Signal Processt(12), 518-531
fast even if used with large codebooks. If used with smaller _ (1992. L o ‘

maps, it is still faster than the Li and Salari quantizer. The 2. W. Li and E. Salari, “A fast vector quantization encoding method for

image compression,[EEE Trans. Circuits Syst. Video Technb(2),
memory usage depends on the number of reference vectors 119-123(1995.
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