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Abstract. This paper presents a fast K-dimensional tree-
based search method to speed up the encoding process for
vector quantization. The method is especially designed for
very large codebooks and is based on a local search rather
than on a global search including the whole feature space.
The relations between the proposed method and several ex-
isting fast algorithms are discussed. Simulation results dem-
onstrate that with little preprocessing and memory cost, the
encoding time of the new algorithm has been reduced sig-
nificantly while encoding quality remains the same with re-
spect to other existing fast algorithms. © 2004 Society of Photo-
Optical Instrumentation Engineers. [DOI: 10.1117/1.1683885]

Subject terms: fast vector quantization; large codebooks; still image
compression.
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1 Introduction

Nearest neighbor search is based on finding the clo
point to a reference point amongM such points in the
K-dimensional (K-d) space. Reducing the complexity o
nearest neighbor search is of considerable interest in ve
quantization~VQ! encoding.

To overcome this problem, several fast quantization
gorithms have been developed. We can classify previ
work into two groups.

The first group seeks a suboptimal solution in the se
of a mean squared error. The second group addresse
exact solution of the nearest neighbor encoding prob
with less computation than that of exhaustive search. In
context,K-d trees have been widely used for fast search
Ref. 1 the emphasis lies on the optimal design of theK-d
tree for efficient nearest neighbor search in multidime
sional space under a bucket-Voronoi intersection sea
framework. The main disadvantage of this method is a re
tively low vector dimension. The fast encoding meth
proposed in Ref. 2 exploits the topological structure of
codebook but is designed for relatively small codebook
1012 Opt. Eng. 43(5) 1012–1013 (May 2004) 0091-3286/2004/$15
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In this paper, a new fast method is presented which s
nificantly reduces the computations without large mem
cost and is applicable for large codebooks and vector
mensions.

2 Description of the Encoding Method

Our proposed method is based on the idea to build clus
containing a certain number of reference vectors. Th
only a certain number of clusters have to be searched
the closest reference vector will be found within these cl
ters. This reduces the number of necessary floating p
operations significantly.

The clustering works as follows: first one empty clus
is generated, which contains the whole input space (Rn). A
vector x belongs to a clusteri, if for each dimensionk, k
51,̄ ,n the following relation holds mink

i ,xk,maxk
i . The

mins and maxs denote the lower and upper bounds of
clusteri in each dimension. Now the reference vectors
put one after another in the appropriate cluster~at the very
beginning in the empty initial cluster!.

Once the number of the vectors in one cluster exce
an application-based threshold value, this cluster is s
into two child clusters. The range of the two child cluste
in the input space is determined as follows: the dimens
of the largest deviation of the reference vectors within
parent cluster is determined. Letdmax be the dimension of
the largest deviation, then the ranges of the two child cl
ters for this specific dimension are for the left clust
(mindmax

,middmax
) and for the right cluster

(middmax
,maxdmax

), while the ranges for the other dimen
sions remain unchanged and are the same for both the
and right cluster. The mins and the maxs are the pare
bounds; middmax

is the average of the two closest values
the reference vectors in this dimension. Each time a clu
is split into two child clusters, the parent cluster become
node in the tree, and the child-clusters are new leaves o
tree. This means the generated tree will be binary with
leaves containing all reference vectors. The nodes can
used to look up a certain cluster. Every nonterminal nod
associated with a region and a partitioning hyperplane
the form x: xdmax

5h, which needs storage of two scala

quantities (dmax,h) at each node, and also the pointers
the child-clusters themselves. The quantitydmax is the co-
ordinate axis orthogonal to the hyperplane and correspo
to the dimension of the largest deviation of the referen
vectors within the parent cluster, whileh is the location of
the plane on this axis. The location is given by the avera
of the two closest values of the reference vectors in t
dimension. Thus, a better discriminatory power can
achieved in a denser data distribution.

This process is repeated until all reference vectors of
codebook have been processed and put into the approp
cluster.

Once all vectors are distributed to the clusters, the cl
est reference vector to a given input vector can be fou
without searching the whole table, but just a couple of cl
ters have to be searched. First the cluster where the in
vector belongs is looked up. This takes only a few co
pares, because the clusters can be ordered in a
structure, which is generated while the clusters are bu
Now the Euclidean distance to all reference vectors in
.00 © 2004 Society of Photo-Optical Instrumentation Engineers
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Meyer-Bäse et al.: Fast K-dimensional tree-structured vector . . .
found cluster is calculated and the closest codeword
found.

The complexity of the tree-structured vector quantiz
tion ~TQ!-lookup algorithm can be determined as follow
the number of compares which are necessary for finding
right cluster depends on the level of the tree. If the ref
ence vectors are uniformly distributed within the codebo
the tree is balanced, and the number of compares is g
by the following equation~provided that each leaf of th
tree contains the same number of reference vecto!:
Ncompares5 log2 Ntotal/Ncluster, in which Ncomparesis the num-
ber of compares,Ntotal is the total number of reference ve
tors, andNcluster the average number of elements in ea
cluster. The number of elements per cluster varies from
to the maximum number of vectors which are allowed p
cluster. Results for the average number of elements
cluster are given in Section 3. After the right cluster
determined, this cluster has to be searched to find the n
est reference vector within this cluster. The number of d
tance calculations isNcluster. If the search is stopped at th
point, quite good results can be achieved with a minim
of computations~see Table 1!. The TQ algorithm which is
executed just until this point will be called Fast TQ, the fu
TQ will be called Accurate TQ. If the search is continued
find the best approximation, the number of computatio
mainly depends on the distribution of the reference vec
within the codebook and on the dimension of the refere
vectors. TQ will be compared to two other algorithms: e
haustive search and the quantization algorithm propose
Ref. 2 ~in the following referred to as Li and Salari algo
rithm!. The exhaustive search does not need to store
further information, so there is no memory overhead. T
Li and Salari algorithm works by calculating the distanc
from the reference vectors to some fixed vectors, and s
ing these distances associated with the reference vec
The number of fixed vectors proposed in Ref. 2 is thr
and this is the number of fixed vectors we used in o
simulations.

3 Simulation Results

Computer simulations using six mammographic imag
from the Mammographic Image Analysis Society~MIAS!
database were performed to evaluate the proposed me
in comparison with some other fast algorithms. We u
three codebook sizes ofN5256, N51024, andN565536
codewords each. The codebooks were generated by a n
network algorithm based on the ‘‘neural-gas’’ network. T
performance of the ‘‘neural-gas’’ network is better than t
usually employed Lloyd algorithm. The vector codebo
was trained by using five 102431024 mammograms usin
the ‘‘neural-gas’’ network. The images are monochrom
with 256 graylevels. The vector dimensionn is 434516.
After the codebook converged, the quantization was p
formed using images, which were not included in the tra
ing set. In our simulations the maximum number of vect
per cluster was set to 7 resp. 19, the average numbe
vectors per cluster was 5 resp. 14.

The simulation results are summarized in Table 1. T
interpretation of the results yields that the Fast TQ is v
fast even if used with large codebooks. If used with sma
maps, it is still faster than the Li and Salari quantizer. T
memory usage depends on the number of reference ve
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per cluster; for 256 vectors it is 1228.8 bytes, which is s
less than the memory usage of the Li and Salari algorit
~6144 bytes!. The Accurate TQ is fast for large codeboo
and uses the same amount of memory as the Fast TQ.
resulting quantized image has the same peak signal to n
ratio of 21.24 dB as that for exhausting search, but
process of quantizing is much faster. For small codebo
~256 vectors! the Li and Salari algorithm performs bette
The values stated in Table 1 are normalized to the num
of vectors that were quantized, i.e., a value of 1024 in
column 1 means that in average 1024 additions we
needed to quantize one vector.

4 Conclusion

A new fast vector lookup technique for large codebooks
been presented in this letter. It has several advantages.
main advantage of the TQ algorithm is that a region in
codebook, which is close to the best matching refere
vector, can be found with just a couple of comparisons
applied to large codebooks, it is the fastest algorithm so
known. Noa priori knowledge is necessary, and it can
applied for high vector dimensions. It is flexible, i.e., it
applicable to every codebook without modifications. T
memory usage is small, so that it can be used even
memory restricted environments. An important applicati
area of the proposed method is telemedicine and it is
pected to support the very high archiving and transmiss
requirements of digital medical images, as required for
ample in teleradiology.
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Table 1 Comparison of computation performance for Fast TQ, Ac-
curate TQ, Li and Salari algorithm, and exhaustive search. The
overall performance is determined by multiplications, additions,
comparisons (MACs) and is needed for the sorting of the code-
vector distances from the hyperplanes for different codebook sizes.
(Codebook is tested with an image outside the training set.)

Size Algorithm * 6 Compares

Fast TQ (7) 21.24 42.48 5.32

256 Acc. TQ (7) 54.88 108.72 133.96

Acc. TQ (19) 91.87 182.73 100.66

Li and Salari 34.96 65.96 101.08

Exh. search 1024 2048 256

Fast TQ (7) 21.33 42.67 5.33

1024 Acc. TQ (7) 176.03 351.05 390.84

Acc. TQ (19) 279.65 558.3 304.55

Li and Salari 667.62 1331.24 1704.11

Exh. search 4096 8192 1024

Fast TQ (7) 19.64 39.28 4.92

65536 Acc. TQ (7) 267.92 534.8 598.76

Acc. TQ (19) 287.32 573.64 433.92

Li and Salari 4995.72 9987.4 26542.52

Exh. search 262144 524288 65536
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